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The weak nonlinear instability of the Euler explicit scheme for the convective equation 
U, + UU, = vu,, is studied analytically using perturbation expansion and discrete Fourier trans- 
form techniques. Short time weak nonlinear growth of the Fourier modes for the noise is 
found, provided that the linear stability conditions are satisfied. As long as the perturbation 
expansion is valid, the maximum growth is approximately proportional to the inverse of the 
grid spacing. 1: 1987 Academc Press. lnc 

INTRODUCTION 

In applying finite difference techniques to the solution of partial differential 
equations, the stability properties of the resulting difference equations seriously 
influence the progress of the calculation. As noted by Daly [ 11, if the finite dif- 
ference approximation to linear equations with constant coefficients is unstable, 
fluctuations present in the system continuously grow in amplitude. When the finite 
difference approximation to nonlinear equations is not stable, the rate of growth of 
fluctuations is subject to change. The nonlinear terms may speed up the growth rate 
or establish an upper limit for these fluctuations. These nonlinear phenomena are 
similar to hydraulic nonlinear stability. 

Linear stability has been studied extensively [2, 31. However, due to 
mathematical difficulty, these are relatively few published reports on nonlinear 
stability theory [ 1,4, $61. For nonlinear equations, transition from linear 
instability to nonlinear instability produces weak nonlinear instability. Though very 
narrow, this region exhibits nonlinear error growth, and gives an estimation of the 
upper limit of linear stability. Many problems in this region can be solved 
analytically by perturbation expansion. 
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In general, convective equations are nonlinear and their stability behavior is dif- 
ficult to describe analytically. A reasonable approach assumes that the time and 
spatial variations of the field velocity are small compared to the noise variation. 
Then the field velocity is held constant so that the problem becomes one with con- 
stant coefficients for linear stability analysis. This approach is simple and generates 
much useful information. 

In this work, the discrete Fourier transformation and perturbation expansion in a 
discrete domain are employed to learn about the weak nonlinear instability of the 
Euler explicit method for U, + UU, = vu,,. Extension of the present method to mul- 
tiple dimensional problems is straightforward. 

ANALYSIS 

Consider Burgers’ equation 

u, + MU, = vu,, (1) 

where v > 0. The field velocity is subject to periodic boundary and initial conditions 

u(t, x) = u(t, x+ 1) (2) 

40, xl =f(x) (3) 

wheref(x) is spatially periodic. Writing the convective term in conservative form, 
the Euler explicit scheme changes Eq. (1) to 

u(m + 1, n) - u(m, n) + 
0 
a { uym, n + 1) - d(m, n - 1)) 

-8{u(m,n+l)-2u(m,n)+u(m,n-I)}=0 

O<n<N 

m = 0, 1 , 2 ,..., 

NAx= 1 (4) 

where cr = At/Ax, 8 = v AtJAx, u(m, n) = u(m At, n Ax), and At is the integration time 
interval. The boundary condition becomes 

u(m, -l)=u(m, N-l). (5) 

Suppose that a finite difference solution U for field velocity without error or noise, 
which of course satisfies Eq. (4) and Eq. (5), is known. A small error ~(0, n), that 
satisfies Eq. (5), is added to the initial condition to investigate how it influences the 
finite difference solution. The finite difference solution becomes 

u(m,n)=U+u(m,n) (6) 
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where u(m, n) is the result of introducing an error. For the sake of simplicity, the 
time and spatial variations of U are assumed to be much smaller than the error and 
to be constant. Substituting Eq. (6) into Eq. (4) and Eq. (5) generates 

~(m+l,n)-o(m,n)+~{~(m,n+l)-o(m,n-1)~ 

+~{~2(m,n+l)-v2(m,n-l)} 

-8{u(m,n+l)-2u(m,n)+u(m,n-l)}=O (7) 

u(m, 0) = u(m, N) (8) 

where cc = UAt/Ax. Now the following discrete Fourier transforms are employed. 

N-l 

u(m, n) = 1 A(m, p) erZnprrlN. 
p=o 

(9) 

Then Eq. (8) is satisfied automatically. Using Eq. (9) and the following formula 

we transform Eq. (7) into the following amplitude equations: 

A(m+l,p)- l-20 l-cos* -iNsin* A(m,p) 
i ( N) N} 

f A(m,s)A(m,p-s)+ Nf’ A(m,s)A(m, N+p-s) 
s=O s=p+l 

p=O, 1, 2 ,..., N- 1. (11) 

Several interesting facts related to Eq. (10) are shown in the Appendix. It is easy to 
prove that these equations satisfy the following relations: 

Ah p) = Ah N-P)* (12) 

where the star denotes the complex conjugate. Equation 11 is a set of coupled non- 
linear difference equations and is very difficult to solve analytically. When the 
introduced error ~(0, n) is small, say smaller than U by one order of magnitude or 
more, there is a period during which the error u(m, n) remains small. The period 
determines the range of the weak nonlinear instability. Though this range may be 
narrow, it controls whether the error will further grow to the range of nonlinear 



254 HSIA AND JENG 

instability or not. Assume that the initial error ~(0, n) is small enough so that the 
following perturbation expansion of A(m, p) is valid. 

A(m,p)=EAI(m,p)+&*A,(m,p)+ ‘.. 

A;(O, PI = 0, 
(13) 

i> 1, 

where E is a sufficiently small parameter and A,(O, p)‘s are of order unity. Sub- 
stituting Eq. (13) in the amplitude equations produces the following set of 
decoupled linear difference equations: 

A,(m+ l,p)- I-28 1 -cosN -iasing A,(m,p)=O 
{ ( zp”> I 

A,(m+ l,p)- l-28 1 -cos* -iccsin* A,(m,p) 
i ( 4 Nl 

+Tsing $J A,(m,s)A,(m,p-s) 
i ,=O 

N-I 
+ 1 A,(m,s)A,(m,N+p-s) =O. 

.S=p+l 1 
(14) 

The solution of the first equation gives the linear stability condition of the von 
Neumann method in Ref. [7]: 

A,(m, p) = u,(p) e m’kp+f4p) 

where a,(p)% are the initial mode amplitudes of ~(0, n), and are random variables. 
The linear stability criteria are 

2ed t, 2v 2 U2 At. (16) 
The second-order solution is 

A,(m,p)=-Fsin$ [2ma,(0)a,(p)e-‘kp+i9p)-u2(P)] ePm(kp+rmQ) 
i 

+c 
P~‘~l~~)~l(~-~)e~m[k,+ky,+i(~~+in~rll 
.s= 1 z,(s, PI 

+ c 
N--l al(s) u,(N+P--s)e~mCki+k’+B~sti(bs+dN+n-r), 

s=p+l z*b, P) 
z,(s,p)= {,~(k,,+l~~)_,~Ck,+kp~,+lO,+~~ps)l} 

z,(s,p)= {e-kP+w-, ~Cks+k~+p-rfi(Os+~~+p~s)l 
1 

N-1 u,(s)u,(N+p-s) 1 
.s=p+ I Z*(&P) . 

(17) 
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It is easy to see that 

A,(m, 0) = A,(m, N/2) = 0. 

The third-order solution is 

A,(m, p) = - (n sin gr 2a,(0)(m2a,(0) al(p) e2(kP+‘+Pp) 
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(18) 

(19) 

RESULT AND DISCUSSION 

When the perturbation u(m, n) is a periodic function with period N, Eqs. (7) and 
(11) are consistent. In general, except for the linear stability solution, the solutions 
of Eq. (11) are more complicated than those of Eq. (7). But the Fourier solutions of 
Eq. (11) suggest much more information in the range of weak nonlinear instability. 
The amplification factors of the linear solutions are 

(20) 

Equation (17) shows that all the higher order solutions die out as the time level m 
becomes sufficiently large, provided that the linear stability criteria of Eq. (16) are 
satisfied and the expansion of Eq. (13) is valid. For a moderate value of m rewrite 
Eq. (17) as 

A,(m,p)=--Fsing 2ma,(0)a,(p)e~(m~1)(k~+i~p) 
i 

‘-’ al(s)al(p-s) 
+c s=l ZIk PI 

Ce 
~m[k,+kp~~+i(~~+~~-r)] -,-m(k,,+iq5p) 1 

N-1 a,(s)u,(N+p-s) 
+ c 

Z2(% PI 
Ce 

~ mCk,+kN+p-s+i(~s+)N+p-s)l -,-m(kp+i&) 

s=p+ 1 

N-l 

= R(m, PI + 1 P(m, P, ~1. (21) 
s=l 
s+P 

R(m, p) is the resonant solution and P(m, p, s)‘s are the nonresonant solutions. The 
resonant phenomenon comes from factor m, and is the result of mode-mode 
excitation between modes 0 and p. P(m,p, S))S reflect energy transformation 
between modes through excitation [4]. Note that a,(p)‘s are random. 
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Consider single R(m, p) and P(m, p, S) separately. If the linear amplification fac- 
tor e - 4 is close to unity, m dominates R(m, p) during the period of small and 
moderate m, and the corresponding error amplitudes will increase in the period. 
Consider the largest amplification factor at p = 1 and N- 1. Note that mode 
p = N - 1 is the complex conjugate of mode p = 1. If N is sufficiently large, this fac- 
tor is very close to unity and is 

(22) 

For these two modes, the growth of 1 R(m, p)I will be significant as shown in Fig. 1. 
Figures 2 and 3 also show the growing path of several 1 R(m, p)l’s. By simple 
manipulation, it is easy to show that 

IR(m,p)l,,, cc~e-‘sin~ 
P 

#I = (k,)-’ (24) 

4 

0 : I R(m,l)! 

1 : ~ P(m,l,Z)I 

2 I PCm,1,3)l 

3 : I P(m,l,4)l 

4 : I P(m,1,5)I 

FIG. 1. The growth of resonant and pseudo-resonant of A,(m, 1), for N= 40, V= a,(p) = 1, 
0 = a = 0.4. 
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0 : I Rlm,2) 

1 : 'P(m,:,l)! 

2 : P(m,Z,3h 

3 : I P(m,Z,4) 

4 : P(m,2,5)' 

FIG. 2. The growth of resonant and pseudo-resonant of AJm, 2), for N=40, V=a,(p)= 1, 
e=a=0.4. 

0 : R(m,3I 

1 : I P(m,3,1)1 

2 : I P(m,3,2l 

3 : I P(m,3,4)l 

4 : I P(m,3,5)l 

FIG. 3. The growth of resonant and pseudo-resonant of A,(m, 3), for N=40, v=a,(p)= 1, 
e=cc=o.4. 
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where fi is the time step at which 1 R(m, p)/ attains its maximum value and is 
denoted as a growing period. For small p and sufficiently large N 

(kp)--’ N N2 
2(p7r)2(28-a7 

Equation (26) indicates that the second-order solutions corresponding to small p 
(which are long waves) will grow to an order proportional to N, provided that 
Eq. (13) is valid. If the magnitude of the initial error modes are = 0.1 and N % 1, the 
strong nonlinear instability region may be switched easily. Table I lists numerical 
values of the growth peak and growing period for several R(.)‘s that verify Eqs. (25) 
and (26). Note that, in addition to the problem of peak and growing period, the 
number of significant growing modes is also proportional to N. 

The growth of the weak nonlinear instability increases as N increases, which 
corresponds to smaller truncation error. However, if the dispersive or dissipative 
error is large, which corresponds to large initial error here, the nonlinear stability 
problem will be switched and Eq. (4) may become nonlinearly unstable. In other 
words, the following two fundamental criteria of Richtmeyer and Morton [2, pp. 93 
may not be satisfied: 

1. for fixed Ax, At, lim,,, Iu(m,n)-u(mAt,nAx)l+O, 

2. forlixedmAt,lim,,,,,,,,, Iu(m,n)-u(mAt,nAx)J+O, 

where u(m At, n Ax) is the exact solution of Eq. (1). The first condition may be 
violated whenever Ax is small enough, while the possibility of violating the second 
condition comes from the decrease of Ax. Consequently, it is mathematically impor- 

TABLE I 

The Growing Peak and Period of 1 R(m, p)j” 

N P fib I R(*, PII N P El lR(k~)l 

20 1 32 
2 8 
3 3 

10 

40 1 126 
2 32 
3 14 

10 - 

1.4789 100 1 791 
0.7640 2 198 
0.5378 3 88 

.- 10 8 

2.9350 200 1 3167 
1.4789 2 791 
l.oooO 3 352 

10 32 

7.3216 
3.6654 
2.4487 
0.7640 

14.6390 
7.3216 
4.8837 
1.4789 

” V=a,(O)=a,(p)=l,I)=a=0.4. 
h Where Ki is the growing period. 



WEAK NONLINEAR INSTABILITY 259 

tant to locate the stable region of the nonlinear instability as pointed out by 
Daly [l] and done by Briggs et al. [6]. 

From Eq. (17) it is seen that the growth is also proportional to CJ = At/Ax. 
Although the smaller 0 has the effect of lowering the unstable character and 
increasing accuracy in the time domain, it does need longer computing time and 
increases the risk of accumulating round-off error. 

If the initial error distribution makes a,(O) = 0, all R(m, p)‘s vanish throughout. 
However, the weak nonlinear instability properties discussed above still exist. There 
are some P(m, p, s)‘s with small zI(s, p) or zz(s, p) that have as short a time growth 
as the R(m, p)‘s have. These P(m,p, s))s are the pseudo-resonant solutions, since 
either z,(s,p) =0 or z2(s, p)=O corresponds to the resonant solution. Figure 1 
demonstrates the growth of R(m, 1) and several P(m, 1,~)‘s for N=40, 8 = 0.4, 
c( = 0.4 and U = 1. Though the P(m, 1,s)‘~ do not grow so significantly large as 
R(m, 1 ), the short time growth is obvious. Figure 2 is for p = 2 with similar con- 
ditions of Fig. 1. Here the growth of P(m, 2, 1) is the same order as that of R(m, 2). 
Similar phenomenon can be found in Fig. 3, where p = 3. From these figures and 
Eq. (21), it is clear that the peaks and growing periods of these pseudo-resonances 
depend on the linear amplification factor e -kp. Similarly, the number of significant 
pseudo-resonant solutions is proportional to N. The above discussions indicate that 
most of the weak nonlinear instability properties are reflected by the resonant 
behavior. Consequently, the following theorem follows. 

THEOREM. The Euler explicit scheme for Eq. (1) has a short time weak nonlinear 
error growth behavior, provided that the linear stability criteria are satisfied. 

Another important phenomenon is the initial growing rate. The rate is controlled 
by e kp, G, and sin(2pn/N). For example, the growing rate of R(m, 1) is not as large 
as R(m, 2) due to the effect of the sine function. Table II shows several m’s at which 
their corresponding ) R(m, p)I is equal to 5, where the factor 5 is considered as one 

TABLE II 

The Time Step at Which 1 R(m, p)I = 5” 

N P tn I NW P)I N P m I R(w P)I 

40 I 
2 
3 
4 

100 I 
2 
3 
4 

11 5.3925 200 1 11 5.4957 
I1 5.0826 2 11 5.4827 
13 5.2530 3 11 5.4610 
17 5.1340 4 11 5.4309 

I1 5.4827 
11 5.4396 
11 5.3459 
11 5.2290 

~a,(O)=a,(p)=l,e=0.4, a=O.8, cr=l. 
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order of magnitude. The smallest m among all these m's for definite N has physical 
meaning. If Brandt’s multiple level grid scheme [S] is employed, the variation of 
this m with respect to 8, ~1, and (T, etc. is a reference for the estimation of the 
maximum allowable iteration steps for a grid level at each cycle. For fine grid 
system, the specific m is equal to 11 for the parameters of Table II. 

In conclusion, the weak nonlinear growth is linked with the linear growth factor 
ePkp and is the result of mode-mode excitation mechanism. Every method that 
makes e- kp smaller suppresses the weak nonlinear error growth and eventually 
reduces the problem of strong nonlinear instability. The condition of using smaller 
ePkp can be achieved by adding damping coefficients or properly changing 8, c(, and 
0. The most successful method for eliminating nonlinear error growth is the mul- 
tiple level grid scheme with the iteration steps of every grid level being carefully 
selected. Another powerful and well known method is the scheme using a variable 
time step at different spatial locations [9]. This method is extremely useful for 
finding a seady state solution. Other possible methods can be found in [6]. Finally, 
the present method can be extended to study the iterative solution of the steady 
state equation provided that the iteration step is interpreted as a time step. 

APPENDIX 

From Eq. (lo), the following facts can be proved easily: 

I 
,;, a(s)h(p-s)+ Nx u(s)h(N+p-s) 

r=p+ 1 

= f: h(s)u(p-s)+ N$ h(s)a(N+p-3) 
,=I \=pil 

(A.1 1 

f, a(s)&,-s)+ “f u(s)b(N+p-~1 
\=p+ I 

=y$-, [u(s)h(q--)I*+ “c’ [u(s)h(N+q-s)l*, p+q=N, (A-2) 
,=q+l 

By applying Eq. (A.2) to the nonlinear terms of Eq. (1 1 ), Eq. ( 12) follows. 
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